Abstract

Debilitating cardiomyocyte loss underlies the progression to heart failure. Although there have been significant advances in treatment, current therapies are intended to improve or preserve heart function rather than regenerate lost myocardium. A major hurdle in implementing a cell-based regenerative therapy is the inefficient differentiation of cardiomyocytes from either endogenous or exogenous stem cell sources. Moreover, cardiomyocytes that develop in human embryonic stem cell (hESC) or human-induced pluripotent stem cell (hIPSC) cultures are comparatively immature, even after prolonged culture, and differences in their calcium handling, ion channel, and force generation properties relative to adult cardiomyocytes raise concerns of improper integration and function after transplantation. Thus, the discovery of natural and novel small molecule synthetic regulators of differentiation and maturation would accelerate the development of stem-cell-based myocardial therapies. Here, we document recent advances in defining natural signaling pathways that direct the multistep cardiomyogenic differentiation program and the development of small molecules that might be used to enhance differentiation as well as the potential characteristics of lead candidates for pharmaceutical stimulation of endogenous myocardial replacement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.