Abstract

We hypothesized that small heterocyclic or nitrogen-containing compounds could act as RND efflux pump inhibitors (EPIs). To ascertain possible EPIs, we sought to identify compounds that synergized with substrates of RND efflux pumps for wild-type bacteria and those that overexpress an efflux pump, but had no synergistic activity against strains in which a gene encoding a component of the AcrAB-TolC efflux pump had been inactivated. Twenty-six compounds plus L-phenylalanyl-L-arginyl-beta-naphthylamide (PAbetaN) and carbonyl cyanide m-chlorophenylhydrazone (CCCP) were screened by bioassay to identify compounds that synergized with ciprofloxacin for a range of Enterobacteriaceae and Pseudomonas aeruginosa. The MICs of ciprofloxacin, tetracycline, chloramphenicol, erythromycin and ethidium bromide+/-synergizing compounds were determined, and the ability to inhibit the efflux of Hoechst 33342 was measured. Two compounds, trimethoprim and epinephrine, consistently showed synergy with antibiotics for most strains. The combinations did not show synergy for Salmonella enterica serovar Typhimurium in which the AcrAB-TolC efflux pump was inactive. Both compounds inhibited the efflux of Hoechst 33342. Two compounds, trimethoprim and epinephrine, which are already licensed for use in man, may warrant further analysis as EPIs. The combination of trimethoprim with another antibiotic is a well-used combination in anti-infective chemotherapy, and so combination with another agent, such as a quinolone, may be a viable option and further studies are now required.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call