Abstract

With the aim of achieving carbon neutrality, new policies to promote electric vehicle (EV) deployment have been announced in various countries. As EV sales gain market-share, the demand for batteries is growing very rapidly, and this has raised concerns about the raw-material supply. Therefore, efficient and environmentally friendly recycling methods for lithium-ion batteries (LIBs) are mandatory to properly implement circular economy paradigms in this field. Hydrometallurgical recycling methods are characterized by their selectivity, high product purity as well as low energy consumption. In order to accomplish a close-loop recycling method, in this work we propose the use of a deep eutectic solvent (DES) and alginate hydrogels as leaching reagent and adsorbent, respectively, for their reusability, availability and biodegradability. The solubility and thermal stability of a choline chloride-ethylene glycol based DES (choline chloride: ethylene glycol = 1:2) were investigated, 180 °C being regarded as the temperature threshold for this DES, and reaching up to 1.12gCoL−1 solubility after 8 h leaching. Moreover, the DES can be reused after the eutectic state recreation with a performance over 80% with respect to the pristine DES. Calcium cross-linked sodium alginate hydrogels, which were immersed in ethylene glycol and dehydrated afterwards, were able to extract cobalt from the leachate with an efficiency of 92%. The aforementioned hydrogels can be reused after desorption and reach 91% of the performance of the pristine ones. The DES together with alginate hydrogel brings therefore a highly efficient and reusable close-loop recycling method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.