Abstract

It has been proposed that the immune system can be partitioned into central and peripheral immune systems. Recently, Carneiroet al. (1996a, b) proposed a network model incorporating B and T lymphocytes that explicitly accounts for that partition. This model, however, had some limitations that are tackled here. Two main changes were introduced: the average idiotypic connectivity is now an explicit function of time based on empirical evidence; and the activation of T lymphocytes by antigen is described by a log-bell shaped dose response curve. The new model, which also accounts for the CIS and PIS distinction, shows more reasonable results since the frequencies of tolerant, immune or autoimmune responses to an antigen are now correct. The model provides a new interpretation for tolerance induction during the neonatal period, and for the adult tolerance induction by low or high doses of antigen. It predicts that natural tolerance for antigens available during the neonatal period can be kept indefinitely upon their removal, while tolerance induced in the adult stages is rapidly lost upon transient removal of the antigen. A semiquantitative analysis of the model provides a simple explanation for the different results in terms of the frequency at which a limited set of canonical connectivity structures emerge during ontogenesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.