Abstract

Multidimensional Small Baseline Subset (MSBAS), methodology is used for integration of multiple InSAR data sets for computation of two or three dimensional time series of deformation. The method is applied to monitor ground deformation with high spatio-temporal resolution. The MSBAS approach allows combination of all possible air-borne and space-borne SAR data acquired with different acquisition parameters, temporal and spatial sampling and resolution, wave-band and polarization. The method has four main advantages: (i) it achieves combined temporal coverage over an extended period of time when data from many different sensors with different temporal coverages are available; (ii) temporal resolution of produced time series increases since it includes the combined sampling from all data sets, which helps to observe the signal in more detail and also to improve the quality of post-processing (i.e. filtering); (iii) two or three components of ground deformation vector are computed, which helps in interpretation of observed ground deformation and further modeling and inversion; (iv) various sources of noise (i.e. tropospheric, ionospheric, topographic, orbital, thermal, etc.) are averaged out during the processing improving a signal-to-noise ratio. Performing double difference between time series of carefully chosen pixels allows reducing noise from common sources such as atmosphere and eliminating the influence of the reference area taken for the time series. For demonstration purposes we apply MSBAS methodology for mapping volcanic ground deformation in Virunga Volcanic Province in Congo and mining deformation along the French-German border.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.