Abstract

Polyethylene (PE) mulch films are an important source of microplastics (MPs) in agricultural soils, which may further affect the bioavailability of coexisting pollutants. In this study, white (WM), black (BM), and silver-black (SM) PE mulch films were aged on the soil surface and under soil burial to simulate the two exposure patterns of abandoned mulch films in the field. Results indicated that the soil-surface exposure induced more pronounced aging characteristics, and WM seemed the most susceptible. Serious surface deterioration by aging led to a drastic decrease in the tensile properties of the films, suggesting the tendency to fragment. Oxygen-containing functional groups were generated on the film surfaces, with oxygen/carbon ratios increasing by up to 29 times, which contributed to the prominent increase in Pb adsorption on the film-derived MPs. Additionally, the film surface became more hydrophobic when exposed to the soil surface but more hydrophilic in the soil-burial exposure, which was in agreement with the change in triclosan adsorption, i.e., promotion and suppression, respectively. Aging generally decreased the desorption potential of the adsorbed pollutants in simulated gastrointestinal solutions due to increased interactions. By comparison, exposure patterns were revealed to be the critical factor for these changes, regardless of film types.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call