Abstract

AbstractAs a leading candidate for further memory and computing applications, memristors are being developed in an important direction of transient electronics. Herein, wafer‐scale acidic polysaccharide thin films are reported as promising materials for memristors with remarkable transient characteristics. The memristor shows freestanding and lightweight features, and can be fully dissolved in deionized water within 3.5 s. More importantly, the ion‐confinement capability of acidic polysaccharides where the cations can interact with the ionizable acid groups enables atomic manipulation of conductive filament. As a result, (i) a single device can produce 16 highly controllable and independent quantized conductance (QC) states with quasi‐nonvolatile and nonvolatile characteristics and (ii) QC switching can be performed with ultrafast speed (2–5 ns) and low energy consumption (0.6–16 pJ). These remarkable features make the memristor promising for fast, low‐power, and high‐density memory and computing applications. Based on QC switching, the encoding/decoding and nonvolatile basic Boolean logic are designed and implemented. More importantly, “stateful” material implication logic which is promising for future in‐memory computing is demonstrated with QC switching. These results significantly advance acidic polysaccharides to develop nanodevices with quantum effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.