Abstract

Investigated herein are water and sediment geochemistry, and metal attenuation processes associated with natural acid rock drainage originating from black shale formations in the Macmillan Pass area, Clear Lake prospect and Engineer Creek by the Dempster Highway in the Yukon Territory, Canada. The most metalliferous water having pH 3.0, 150 mg/L Zn, 39 mg/L Ni, 2.8 mg/L Cu and 9.1 mg/L As was found in a tributary stream of Engineer Creek with no known mineral deposits occurring in the vicinity. For all three study areas, the water and sediment geochemistry is significantly affected by the local lithology and prevailing metal attenuation processes. Despite their anomalous acidity and metal contents, the natural acid streams contribute only a small fraction of the contaminant loadings to the major water courses because of their low flows. Dilution, neutralization, sorption and co-precipitation are identified as the major mechanisms attenuating aqueous transport of potentially deleterious metals. However, microbial mediation in metal attenuation is also evident in low-flow systems. The wide variation of water and sediment geochemistry along a flow path renders the establishment of background metal values difficult. In assessing environmental impacts, it may be more practical to consider metal loadings on a watershed scale than to rely on a comparison with operationally defined background concentrations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call