Abstract

AbstractThis study aims to evaluate the application of 222Rn in groundwater as a tracer for monitoring CO2 plume migration in a shallow groundwater system, which is important to detect potential CO2 leakage in the carbon capture and storage (CCS) project. For this research, an artificial CO2‐infused water injection experiment was performed in a shallow aquifer by monitoring hydrogeochemical parameters, including 222Rn. Radon in groundwater can be a useful tracer because of its sensitivity to sudden changes in subsurface environment. To monitor the CO2 plume migration, the data were analysed based on (a) the influence of mixing processes on the distribution of 222Rn induced by the artificial injection experiment and (b) the influence of a carrier gas role by CO2 on the variation of 222Rn. The spatio‐temporal distributions of radon concentrations were successfully explained in association with horizontal and vertical mixing processes by the CO2‐infused water injection. Additionally, the mixing ratios of each monitoring well were calculated, quantitatively confirming the influence of these mixing processes on the distribution of radon concentrations. Moreover, one monitoring well showed a high positive relationship between 222Rn and Total dissolved inorganic carbon (TIC) by the carrier gas effect of CO2 through volatilization from the CO2 plume. It indicated the applicability of 222Rn as a sensitive tracer to directly monitor CO2 leakage. When with a little effect of carrier gas, natural 222Rn in groundwater can be used to compute mixing ratio of CO2‐infused water indicative of CO2 migration pathways. CO2 carrier gas effect can possibly increase 222Rn concentration in groundwater and, if fully verified with more field tests, will pose a great potential to be used as a natural tracer for CO2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.