Abstract
Optogenetic technologies have often been used as tools for neuronal activation or silencing by light. Natronomonas pharaonis halorhodopsin (NpHR) is a light-driven chloride ion pump. Upon light absorption, a chloride ion passes through the cell membrane, which is accompanied by the temporary binding of a chloride ion with Thr126 at binding site-1 (BS1) near the protonated Schiff base in NpHR. However, the mechanism of stabilization of the binding state between a chloride ion and BS1 has not been investigated. Therefore, to identify a key component of the chloride ion transport pathway as well as to acquire dynamic information about the chloride ion-BS1 binding state, we performed a rough analysis of the chloride ion pathway shape followed by molecular dynamics (MD) simulations for both wild-type and mutant NpHR structures. The MD simulations showed that the hydrogen bond between Thr126 and the chloride ion was retained in the wild-type protein, while the chloride ion could not be retained at and tended to leave BS1 in the S81A mutant. We found that the direction of the Thr126 side chain was fixed by a hydroxyl group of Ser81 through a hydrogen bond and that Thr126 bound to a chloride ion in the wild-type protein, while this interaction was lost in the S81A mutant, resulting in rotation of the Thr126 side chain and reduction in the interaction between Thr126 and a chloride ion. To confirm the role of S81, patch clamp recordings were performed using cells expressing NpHR S81A mutant protein. Considered together with the results that the NpHR S81A-expressing cells did not undergo hyperpolarization under light stimulation, our results indicate that Ser81 plays a key role in chloride migration. Our findings might be relevant to ongoing clinical trials using optogenetic gene therapy in blind patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.