Abstract

BackgroundNervous tissues express various communication molecules including natriuretic peptides, i.e. Brain Natriuretic Peptide (BNP) and C-type Natriuretic Peptide (CNP). These molecules share structural similarities with cyclic antibacterial peptides. CNP and to a lesser extent BNP can modify the cytotoxicity of the opportunistic pathogen Pseudomonas aeruginosa. The psychrotrophic environmental species Pseudomonas fluorescens also binds to and kills neurons and glial cells, cell types that both produce natriuretic peptides. In the present study, we investigated the sensitivity of Pseudomonas fluorescens to natriuretic peptides and evaluated the distribution and variability of putative natriuretic peptide-dependent sensor systems in the Pseudomonas genus.ResultsNeither BNP nor CNP modified P. fluorescens MF37 growth or cultivability. However, pre-treatment of P. fluorescens MF37 with BNP or CNP provoked a decrease of the apoptotic effect of the bacterium on glial cells and an increase of its necrotic activity. By homology with eukaryotes, where natriuretic peptides act through receptors coupled to cyclases, we observed that cell-permeable stable analogues of cyclic AMP (dbcAMP) and cyclic GMP (8BcGMP) mimicked the effect of BNP and CNP on bacteria. Intra-bacterial concentrations of cAMP and cGMP were measured to study the involvement of bacterial cyclases in the regulation of P. fluorescens cytotoxicity by BNP or CNP. BNP provoked an increase (+49%) of the cAMP concentration in P. fluorescens, and CNP increased the intra-bacterial concentrations of cGMP (+136%). The effect of BNP and CNP on the virulence of P. fluorescens was independent of the potential of the bacteria to bind to glial cells. Conversely, LPS extracted from MF37 pre-treated with dbcAMP showed a higher necrotic activity than the LPS from untreated or 8BcGMP-pre-treated bacteria. Capillary electrophoresis analysis suggests that these different effects of the LPS may be due, at least in part, to variations in the structure of the macromolecule.ConclusionThese observations support the hypothesis that P. fluorescens responds to natriuretic peptides through a putative sensor system coupled to a cyclase that could interfere with LPS synthesis and thereby modify the overall virulence of the micro-organism.

Highlights

  • Nervous tissues express various communication molecules including natriuretic peptides, i.e. Brain Natriuretic Peptide (BNP) and C-type Natriuretic Peptide (CNP)

  • Addition of brain natriuretic peptide (BNP) or C-type natriuretic peptide (CNP) (10-6 M) at the onset of the incubation or at the beginning of the stationary phase did not modify the general profile of the growth curve or the mean time required for doubling of the bacterial population

  • Effect of pre-treatment with natriuretic peptides on the potential of Pseudomonas fluorescens MF37 to provoke apoptosis in glial cells The spontaneous nitrite (NO2-) synthase activity of Pseudomonas fluorescens MF37 is very low (Fig. 1); as previously demonstrated [17], NO2- ions detected in the medium of cultures of glial cells exposed to P. fluorescens MF37 result from eukaryotic nitric oxide (NO) synthases activated during the induction of the apoptotic death of the glial cells

Read more

Summary

Introduction

Nervous tissues express various communication molecules including natriuretic peptides, i.e. Brain Natriuretic Peptide (BNP) and C-type Natriuretic Peptide (CNP). These molecules share structural similarities with cyclic antibacterial peptides. CNP and to a lesser extent BNP can modify the cytotoxicity of the opportunistic pathogen Pseudomonas aeruginosa. The psychrotrophic environmental species Pseudomonas fluorescens binds to and kills neurons and glial cells, cell types that both produce natriuretic peptides. We investigated the sensitivity of Pseudomonas fluorescens to natriuretic peptides and evaluated the distribution and variability of putative natriuretic peptide-dependent sensor systems in the Pseudomonas genus

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call