Abstract
Natriuretic peptides regulate cyclic guanosine monophosphate (cGMP) levels via their receptors and have various physiological effects. Natriuretic peptide receptor C (NPR-C) increases cGMP signaling by functioning as a clearance receptor. We analyzed the role of natriuretic peptides in the skeletal muscle, which increases in mass with bone elongation, of NPR-C− mice. High-fat diet (HFD)-fed NPR-C− mice exhibited obesity resistance and higher oxygen consumption. PGC1α gene expression was upregulated in the gastrocnemius muscle of HFD-fed NPR-C− mice compared with HFD-fed NPR-C+ (wild-type) mice. Gene expression of proliferator-activated receptor delta and estrogen-related receptor α, which upregulate oxidative metabolism, was increased in the gastrocnemius muscle of NPR-C− mice, irrespective of diet. Expression of myosin heavy chain 7, a component of type I slow-twitch fiber, was enhanced. Natriuretic peptide signaling may influence oxidative metabolism-related and slow-twitch fiber constitutive gene expression in the fast-twitch gastrocnemius muscle but not in slow-twitch muscles such as the soleus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.