Abstract

Background/purposeIn anti-myelin associated glycoprotein (anti-MAG) neuropathies, there is evidence that anti-MAG antibodies are pathogenic but numerous studies report the absence or a weak correlation between the titers of these antibodies and disease course. In this study we assessed the relationships between MAG and glycosylated moieties located on Fc fragment of IgM anti-MAG. Material and methodsIgM were extracted from the serum of 8 patients with anti-MAG neuropathy and in 2 patients with anti-MAG antibodies without anti-MAG neuropathy. Anti-MAG activity was performed with pre- and post-deglycosylated IgM extracts using indirect immunofluorescence (IIF) and ELISA. Sera from 49 patients with IgM monoclonal gammopathy without neurological disease were tested as control group (CG). Results were compared to clinical scores. For 4 patients the affinity constant of IgM with MAG was analyzed pre- and post-deglycosylated, using surface plasmon resonance technology (SPR). ResultsThe relationships between MAG and glycosylated moieties of IgM anti-MAG were confirmed by kinetic and immunological assays. Deglycosylation resulted in a decrease in anti-MAG titers. Post-deglycosylation anti-MAG titers trended with changes in IgM titers and allowed quantifying anti-MAG antibodies without a saturation of the testing method. After deglycosylation, the titers better represented pathogenic activity and help to follow a given patient's clinical status prospectively. Six patients from CG (12.2%) had anti-MAG antibody titers over positive threshold: 1000 Bühlmann-Titer-Units (BTU) supporting the hypothesis of neutral intermolecular interactions between IgM and MAG. Deglycosylation allowed distinguishing infra clinical forms from neutral relationships forms, when the titers are weak but this assay remains essentially a diagnostic tool.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.