Abstract

Enzymes play crucial roles in life sciences, pharmaceuticals and industries as biological catalysts that speed up biochemical reactions in living organisms. New catalytic reactions are continuously developed by enzymatic engineering to meet industrial needs, which thereby drives the development of analytical approaches for real-time reaction monitoring to reveal catalytic processes. Here, taking the hydrolase— chymotrypsin as a model system, we proposed a convenient method for monitoring catalytic processes through native top-down mass spectrometry (native TDMS). The chymotrypsin sample heterogeneity was first explored. By altering sample introduction modes and pHs, covalent and noncovalent enzymatic complexes, substrates and products can be monitored during the catalysis and further confirmed by tandem MS. Our results demonstrated that native TDMS based catalysis monitoring has distinctive strength on real-time inspection and continuous observation, making it a promising tool for characterizing more biocatalysts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call