Abstract

Titration to high pH converts yeast iso-2 cytochrome c to an inactive but more stable alkaline form lacking a 695-nm absorbance band [Osterhout, J. J., Jr., Muthukrishnan, K., & Nall, B. T. (1985) Biochemistry 24, 6680-6684]. The kinetics of absorbance-detected refolding of the alkaline form have been measured by dilution of guanidine hydrochloride in a stopped-flow instrument. Fast-folding species (tau 2) are detected, as in refolding to the native state at neutral pH. An additional kinetic phase (tau a) is observed with an amplitude opposite in sign to the fast phase. The amplitude of this phase increases and the rate increases with increasing pH. Comparison to pH-jump measurements of the fully folded protein shows that phase tau a has the same sign, rate, and pH dependence as the alkaline isomerization reaction, suggesting that this new phase involves isomerization of native or nativelike species following fast folding. Absorbance difference spectra are taken at 5-s intervals during refolding at high pH. The spectra verify that nativelike species--with a 695-nm absorbance band--are formed transiently, before conversion of the protein to the alkaline form. Refolding in the presence of ascorbate shows that the transient, nativelike species are reducible, unlike alkaline iso-2. Thus, (1) refolding to the alkaline form of iso-2 cytochrome c proceeds through transient native or nativelike species, and (2) a folding pathway leading to native or nativelike forms is maintained at high pH, where native species are no longer the thermodynamically favored product.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call