Abstract

The contribution of disordered regions to protein function and structure is a relatively new field of study and of particular significance as their function has been implicated in some human diseases. Our objective was to analyze various deletion mutants of the bromodomain-containing protein 4 (BRD4) using native mass spectrometry to characterize the gas-phase behavior of the disordered region connected to the folded domain. A protein with a single bromodomain but no long disordered linker displayed a narrow charge distribution at low charge states, suggesting a compact structure. In contrast, proteins containing one or two bromodomains connected to a long disordered region exhibited multimodal charge distributions, suggesting the presence of compact and elongated conformers. In the presence of a pan-BET-bromodomain inhibitor, JQ1, the protein-JQ1 complex ions had relatively small numbers of positive charges, corresponding to compact conformers. In contrast, the ions with extremely high charge states did not form a complex with JQ1. This suggests that all of the JQ1-bound BRD4 proteins in the gas phase are in a compact conformation, including the linker region, while the unbound forms are considerably elongated. Although these are gas-phase phenomena, it is possible that the long disordered linker connected to the bromodomain causes the denaturation of the folded domain, which, in turn, affects its JQ1 recognition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.