Abstract

To inhibit the abnormal aggregation of Cu, Zn-superoxide dismutase (SOD1) is regarded as a potential therapeutic strategy of SOD1-linked amyotrophic lateral sclerosis (ALS). Herein the interactions between SOD1 and four stilbene-based polyphenols, namely, resveratrol, oxyresveratrol, polydatin, and 2,3,4',5-tetrahydroxystilbene-2-O-β-d-glycoside (THSG), were investigated using electrospray ionization mass spectrometry (ESI-MS) combined with ion mobility (IM) spectrometry. The addition of tandem MS to the study of SOD1-ligand complexes provides further insight into their gas-phase stability. Monitoring the unfolding of SOD1-ligand complexes using IM-MS allows observation of subtle changes in the protein stability upon ligand binding. From the MS/MS and IM-MS measurements, polydatin and THSG were highlighted as the strongest bound compounds in the gas phase, and both of them appear to provide a stabilizing effect on the SOD1 dimer conformation. In addition, the data of fluorescence assays clearly show the ability of the ligands to inhibit apoSOD1 from aggregation, and polydatin was found to have the strongest inhibitory effect. Overall, the method described here can be an effective approach to investigate the interactions between SOD1 and other drug-like molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.