Abstract
Photosystem II (PSII) catalyzes a key step in photosynthesis, the oxidation of water to oxygen. Excellent structural models exist for the dimeric PSII core complex of cyanobacteria, but higher order physiological assemblies readily dissociate when solubilized from the native thylakoid membrane with detergent. Here, we describe the crystallization of PSII from Thermosynechococcus elongatus with a postcrystallization treatment involving extraction of the detergent C12E8. This resulted in a transition from Type II to Type I-like membrane protein crystals and improved diffraction to 2.44Å resolution. The obtained PSII packing in precise rows, interconnected by specific pairs of galactolipids and a loop in the PsbO subunit specific to cyanobacteria, is superimposable with previous electron microscopy images of the thylakoid membrane. The study provides a detailed model of such a superstructure and its organization of light-harvesting pigments with possible implications for the understanding of their efficient use of solar energy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.