Abstract

Dittrichia viscosa is a Mediterranean ruderal species that over the last decades has expanded into new habitats, including coastal salt marshes, ecosystems that are per se fragile and threatened by human activities. To assess the potential risk that this native-invasive species represents for the genuine salt marsh vegetation, we compared its distribution with that of Inula crithmoides, a taxonomically related halophyte, in three salt marshes located in “La Albufera” Natural Park, near the city of Valencia (East Spain). The presence of D. viscosa was restricted to areas of low and moderate salinity, while I. crithmoides was also present in the most saline zones of the salt marshes. Analyses of the responses of the two species to salt and water stress treatments in controlled experiments revealed that both activate the same physiological stress tolerance mechanisms, based essentially on the transport of toxic ions to the leaves—where they are presumably compartmentalized in vacuoles—and the accumulation of specific osmolytes for osmotic adjustment. The two species differ in the efficiency of those mechanisms: salt-induced increases in Na+ and Cl− contents were higher in I. crithmoides than in D. viscosa, and the osmolytes (especially glycine betaine, but also arabinose, fructose and glucose) accumulated at higher levels in the former species. This explains the (slightly) higher stress tolerance of I. crithmoides, as compared to D. viscosa, established from growth inhibition measurements and their distribution in nature. The possible activation of K+ transport to the leaves under high salinity conditions may also contribute to salt tolerance in I. crithmoides. Oxidative stress level—estimated from malondialdehyde accumulation—was higher in the less tolerant D. viscosa, which consequently activated antioxidant responses as a defense mechanism against stress; these responses were weaker or absent in the more tolerant I. crithmoides. Based on these results, we concluded that although D. viscosa cannot directly compete with true halophytes in highly saline environments, it is nevertheless quite stress tolerant and therefore represents a threat for the vegetation located on the salt marshes borders, where several endemic and threatened species are found in the area of study.

Highlights

  • Salt marshes are coastal ecosystems developed in temperate zones, occupied mainly by halophytic vegetation that can be exposed, in some cases, to tidal flooding

  • The distribution of the halophyte Inula crithmoides and the native-invasive Dittrichia viscosa was registered in three salt marshes in “La Albufera” Natural Park (Figure 1), and related to soil EC and moisture measurements in each point where the two species were present

  • Absolute MDA contents were significantly lower in I. crithmoides than in D. viscosa, under all stress conditions tested, the differences between the two species were not extremely large (Figures 6A–C). These results indicate that drought and salinity cause a higher degree of oxidative stress in D. viscosa than in I. crithmoides, which is in agreement with the relative stress tolerance of the two taxa shown by the previous experiments and by their distribution in nature

Read more

Summary

Introduction

Salt marshes are coastal ecosystems developed in temperate zones, occupied mainly by halophytic vegetation that can be exposed, in some cases, to tidal flooding These are specialized habitats, characterized by a high primary productivity and species diversity, which support a wide variety of native flora and fauna, and constitute as well important areas for wintering aquatic birds (Simas et al, 2001). The habitats 1150 (Coastal lagoons) and 1510 (Mediterranean salt steppes, Limonietalia), intrinsically related to the salt marshes, are considered priority habitats by the European legislation (Council Directive, 1992) In such areas many Plant MicroReserves have been declared, some devoted to the protection of halophytic vegetation (Fos et al, 2014). The pressure of invasive plants has strong effects in such fragmented and linear ecosystems (Petillón et al, 2005, and references therein)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call