Abstract

Chemical reactions of hydrogen storage materials often involve mass transport through a bulk solid. Diffusion in crystalline solids proceeds by means of lattice defects. Using density functional theory (DFT) calculations, we identify the stability and the mobility of the most prominent lattice defects in the hydrogen storage material NaBH4. At experimental dehydrogenation conditions, the Schottky defects of missing Na+ and BH4– ions form the main vehicle for mass transport in NaBH4. Substituting a BH4– by a H– ion yields the most stable defect, locally converting NaBH4 into NaH. Such a substitution most likely occurs at the surface of NaBH4, releasing BH3. Adding Mg or MgH2 to NaBH4 promotes this scenario.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.