Abstract
We developed a dissipative particle dynamics (DPD) approach that captures polyalanine folding into a stable helical conformation. Within the proposed native-based approach, the DPD parameters are derived based on the contact map constructed from the molecular dynamics (MD) simulations. We show that the proposed approach reproduces the folding of polypeptides of various lengths, including bundle formation for sufficiently long polypeptides. The proposed approach also allows one to capture the folding of the helical segments of the lysozyme. With further development of computationally efficient native-based DPD approaches for folding, modeling of a range of biomaterials incorporating α-helical segments could be extended to time and length scales far beyond those accessible in molecular dynamics simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.