Abstract
<p>Seed-based ecosystem restoration has huge potential to restore degraded lands but currently less than 10 % of directly sown seeds successfully establish in drylands. Soil microbial communities are important for improving plant establishment in degraded land. However, current methods such as soil translocation can potentially disturb the donor site. In this study, we investigated a novel non-destructive method for improving seedling growth of native plants used in restoration through seed-soil-microbial pelleting. We assessed seedling emergence and survival of <em>Triodia epactia</em> and <em>Acacia inaequilatera</em> seeds inoculated with whole soil bacteria and cyanobacteria consortia retrieved and isolated from a pristine ecosystem. A field experiment was set-up in a 35m x 40m purpose-built rain exclusion shelter that contained reconstructed soil profiles typically encountered in mine rehabilitation programs of Australia’s arid north-west. We hypothesized that inoculated seed-soil pellets would improve seedling emergence and survival of these species. After three weeks of planting, seedling emergence in microbially inoculated <em>Acacia</em> <em>inaequilatera</em> and <em>Triodia epactia</em> were 48% and 55% higher than non-inoculated seeds in bacteria and cyanobacteria, respectively. We also tested whether the use of cyanobacteria consortia as inocula promoted higher seedling emergence over whole soil bacteria. We found that there was no significant difference in seedling emergence between the microbial taxa. We show that, improving the diversity of soil microorganisms improves seedling emergence and the seed-soil pellet method used is viable to improve seed-based restoration outcomes.</p><p><strong>Key words</strong>: Seed-based restoration, microbial community, cyanobacteria, bacteria community, seedling emergence.</p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.