Abstract
Supergeneralists, defined as species that interact with multiple groups of species in ecological networks, can act as important connectors of otherwise disconnected species subsets. In Brazil, there are two supergeneralist bees: the honeybee Apis mellifera, a non-native species, and Trigona spinipes, a native stingless bee. We compared the role of both species and the effect of geographic and local factors on networks by addressing three questions: 1) Do both species have similar abundance and interaction patterns (degree and strength) in plant-bee networks? 2) Are both species equally influential to the network structure (nestedness, connectance, and plant and bee niche overlap)? 3) How are these species affected by geographic (altitude, temperature, precipitation) and local (natural vs. disturbed habitat) factors? We analyzed 21 plant-bee weighted interaction networks, encompassing most of the main biomes in Brazil. We found no significant difference between both species in abundance, in the number of plant species with which each bee species interacts (degree), and in the sum of their dependencies (strength). Structural equation models revealed the effect of A. mellifera and T. spinipes, respectively, on the interaction network pattern (nestedness) and in the similarity in bee’s interactive partners (bee niche overlap). It is most likely that the recent invasion of A. mellifera resulted in its rapid settlement inside the core of species that retain the largest number of interactions, resulting in a strong influence on nestedness. However, the long-term interaction between native T. spinipes and other bees most likely has a more direct effect on their interactive behavior. Moreover, temperature negatively affected A. mellifera bees, whereas disturbed habitats positively affected T. spinipes. Conversely, precipitation showed no effect. Being positively (T. spinipes) or indifferently (A. mellifera) affected by disturbed habitats makes these species prone to pollinate plant species in these areas, which are potentially poor in pollinators.
Highlights
Supergeneralist species, defined as species that interact with multiple groups of species, are considered key species in interaction networks because they act as important connectors of species subsets that otherwise would be unconnected [1,2,3]
Disturbed habitats can be better tolerated by generalist species than specialized ones [22,23] and are more likely to facilitate the settlement of invasive species [24,25,26,27,28], changing the network structure due to species loss and reorganization of interaction patterns [29]
We found 21 surveys presenting the number of each bee species found on a plant species
Summary
Supergeneralist species, defined as species that interact with multiple groups of species, are considered key species in interaction networks because they act as important connectors of species subsets that otherwise would be unconnected [1,2,3]. Climate change, with increasing variability in temperature and precipitation, appears to have a more moderate effect on invasive species [16,17] and, in some cases, leads to a homogenization of interaction networks due to the expansion of generalists [18]. It can disrupt interactions themselves since partner species may disperse differently when seeking for new habitats [19,20,21]. Complex abiotic-biotic features appear to drive species interactions
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.