Abstract
Abstract Differential scanning calorimetry (DSC) and isothermal calorimetric batch technique were used to monitor the heat-induced structural changes and adsorption properties of human immunoglobulin G (IgG), in native and hydrophobized states. The transition temperature (T max) and enthalpy of heat-induced conformational changes (cal H) of IgG in solution as well as the enthalpy change accompanying the adsorption of IgG onto hydrophilic silica (ads H), were shown to depend on the degree of the protein hydrophobicity (number of covalently attached alkyl chains). The adsorption enthalpy for all forms of IgG at all surface concentrations was found to be endothermic, that is the process is entropy driven. Factors affecting the IgG adsorption onto silica are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.