Abstract
The type II secretion system (T2SS), which transports selected periplasmic proteins across the outer membrane, has rarely been studied in nonpathogens or in organisms classified as Betaproteobacteria. Therefore, we studied Cupriavidus metallidurans (Cme), a facultative chemilithoautotroph. Gel analysis of extracellular proteins revealed no remarkable differences between the wild type and the T2SS mutants. However, enzyme assays revealed that native extracellular alkaline phosphatase is a T2SS substrate, because activity was 10-fold greater for the wild type than a T2SS mutant. In Cme engineered to produce three Ralstonia solanacearum (Rso) exoenzymes, at least 95% of their total activities were extracellular, but unexpectedly high percentages of these exoenzymes remained extracellular in T2SS mutants cultured in rich broth. These conditions appear to permit an alternative secretion process, because neither cell lysis nor periplasmic leakage was observed when Cme produced a Pectobacterium carotovorum exoenzyme, and wild-type Cme cultured in minimal medium secreted 98% of Rso polygalacturonase, but 92% of this exoenzyme remained intracellular in T2SS mutants. We concluded that Cme has a functional T2SS despite lacking any abundant native T2SS substrates. The efficient secretion of three foreign exoenzymes by Cme is remarkable, but so too is the indication of an alternative secretion process in rich culture conditions. When not transiting the T2SS, we suggest that Rso exoenzymes are probably selectively packaged into outer membrane vesicles. Phylogenetic analysis of T2SS proteins supports the existence of at least three T2SS subfamilies, and we propose that Cme, as a representative of the Betaproteobacteria, could become a new useful model system for studying T2SS substrate specificity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.