Abstract

A high-quality remote sensing interpretation dataset has become crucial for driving an intelligent model, i.e., deep learning (DL), to produce land-use/land-cover (LULC) products. The existing remote sensing datasets face the following issues: the current studies (1) lack object-oriented fine-grained information; (2) they cannot meet national standards; (3) they lack field surveys for labeling samples; and (4) they cannot serve for geographic engineering application directly. To address these gaps, the national-standards- and DL-oriented raster and vector benchmark dataset (RVBD) is the first to be established to map LULC for conducting soil water erosion assessment (SWEA). RVBD has the following significant innovation and contributions: (1) it is the first second-level object- and DL-oriented dataset with raster and vector data for LULC mapping; (2) its classification system conforms to the national industry standards of the Ministry of Water Resources of the People’s Republic of China; (3) it has high-quality LULC interpretation accuracy assisted by field surveys rather than indoor visual interpretation; and (4) it could be applied to serve for SWEA. Our dataset is constructed as follows: (1) spatio-temporal-spectrum information is utilized to perform automatic vectorization and label LULC attributes conforming to the national standards; and (2) several remarkable DL networks (DenseNet161, HorNet, EfficientNetB7, Vision Transformer, and Swin Transformer) are chosen as the baselines to train our dataset, and five evaluation metrics are chosen to perform quantitative evaluation. Experimental results verify the reliability and effectiveness of RVBD. Each chosen network achieves a minimum overall accuracy of 0.81 and a minimum Kappa of 0.80, and Vision Transformer achieves the best classification performance with overall accuracy of 0.87 and Kappa of 0.86. It indicates that RVBD is a significant benchmark, which could lay a foundation for intelligent interpretation of relevant geographic research about SWEA in the Yangtze River Basin and promote artificial intelligence technology to enrich geographical theories and methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call