Abstract

Decision tree classifiers have received much recent attention, particularly with regards to land cover classifications at continental to global scales. Despite their many benefits and general flexibility, the use of decision trees with high spatial resolution data has not yet been fully explored. In support of the National Park Service (NPS) Vegetation Mapping Program (VMP), we have examined the feasibility of using a commercially available decision tree classifier with multitemporal satellite data from the Enhanced Thematic Mapper-Plus (ETM+) instrument to map 11 land cover types at the Delaware Water Gap National Recreation Area near Milford, PA. Ensemble techniques such as boosting and consensus filtering of the training data were used to improve both the quality of the input training data as well as the final products. Using land cover classes as specified by the National Vegetation Classification Standard at the Formation level, the final land cover map has an overall accuracy of 82% ( κ=0.80) when tested against a validation data set acquired on the ground ( n=195). This same accuracy is 99.5% when considering only forest vs. nonforest classes. Usage of ETM+ scenes acquired at multiple dates improves the accuracy over the use of a single date, particularly for the different forest types. These results demonstrate the potential applicability and usability of such an approach to the entire National Park system, and to high spatial resolution land cover and forest mapping applications in general.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call