Abstract

Biological image processing is performed by complex neural networks composed of thousands of neurons interconnected via thousands of synapses, some of which are excitatory and others inhibitory. Spiking neural models are distinguished from classical neurons by being biological plausible and exhibiting the same dynamics as those observed in biological neurons. This paper proposes a Natural Convolutional Neural Network (NatCSNN) which is a 3-layer bio-inspired Convolutional Spiking Neural Network (CSNN), for classifying objects extracted from natural images. A two-stage training algorithm is proposed using unsupervised Spike Timing Dependent Plasticity (STDP) learning (phase 1) and ReSuMe supervised learning (phase 2). The NatCSNN was trained and tested on the CIFAR-10 dataset and achieved an average testing accuracy of 84.7% which is an improvement over the 2-layer neural networks previously applied to this dataset.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.