Abstract

N-acetyltransferase 1 (NAT1) is a phase II metabolic enzyme responsible for the biotransformation of aromatic and heterocyclic amine carcinogens such as 4-aminobiphenyl (ABP). NAT1 catalyzes N-acetylation of arylamines as well as the O-acetylation of N-hydroxylated arylamines. O-acetylation leads to the formation of electrophilic intermediates that result in DNA adducts and mutations. NAT1 is transcribed from a major promoter, NATb, and an alternative promoter, NATa, resulting in mRNAs with distinct 5'-untranslated regions (UTR). NATa mRNA is expressed primarily in the kidney, liver, trachea, and lung while NATb mRNA has been detected in all tissues studied. To determine if differences in 5'-UTR have functional effect upon NAT1 activity and DNA adducts or mutations following exposure to ABP, pcDNA5/FRT plasmid constructs were prepared for transfection of full-length human mRNAs including the 5'-UTR derived from NATa or NATb, the open reading frame, and 888 nucleotides of the 3'-UTR. Following stable transfection of NATb/NAT1*4 or NATa/NAT1*4 into nucleotide excision repair (NER) deficient Chinese hamster ovary cells, N-acetyltransferase activity (in vitro and in situ), mRNA, and protein expression were higher in NATb/NAT1*4 than NATa/NAT1*4 transfected cells (P < 0.05). Consistent with NAT1 expression and activity, ABP-induced DNA adducts and hypoxanthine phosphoribosyl transferase mutants were significantly higher (P < 0.05) in NATb/NAT1*4 than in NATa/NAT1*4 transfected cells following exposure to ABP. These differences observed between NATa and NATb suggest that the 5'-UTRs are differentially regulated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call