Abstract

Gastric cancer is an aggressive malignancy with poor patient outcomes. N-Acetyltransferase 10 (NAT10) is an acetyltransferase that has been reported to contribute to gastric cancer progression. In-depth investigation into the underlying molecular mechanisms driven by NAT10 could help identify therapeutic targets to improve gastric cancer treatment. In this study, we found that NAT10 forms condensates to regulate RNA dynamics and promote gastric cancer progression. In samples of patients with gastric cancer, elevated NAT10 expression correlated with an unfavorable prognosis, advanced disease stage, and metastasis. NAT10 enhanced the proliferation, migration, and invasion of gastric cancer cells; supported the growth of patient-derived organoids; and accelerated tumor development. A C-terminal intrinsically disordered region-mediated liquid-liquid phase separation of NAT10 and was essential for its tumor-promoting function in gastric cancer. Moreover, NAT10 interacted with the splicing factor serine/arginine-rich splicing factor 2 (SRSF2), leading to its acetylation and increased stability. Acetylated SRSF2 directly bound to the pre-mRNA of the m6A reader YTHDF1, resulting in enhanced YTHDF1 exon 4 skipping and upregulation of a short YTHDF1 transcript that could stimulate gastric cancer cell proliferation and migration. Furthermore, YTHDF1 exon 4 skipping correlated with NAT10 and SRSF2 expression and was associated with a more aggressive phenotype in samples of patients with gastric cancer. Together, this study uncovers the role of NAT10 liquid-liquid phase separation in modulating YTHDF1 splicing through SRSF2 acetylation to drive gastric cancer progression, providing insights into the oncogenic mechanism of NAT10. Significance: Phase separation of NAT10 enables acetylation of SRSF2 that enhances YTHDF1 exon 4 skipping, which is a tumor-promoting axis in gastric cancer that represents potential therapeutic targets and prognostic biomarkers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.