Abstract
We suggest to look at quantum measurement outcomes not through the lens of probability theory, but instead through decision theory. We introduce an original game-theoretical framework, model and algorithmic procedure where measurement scenarios are multiplayer games with a structure all observers agree on. Measurement axes and, newly, measurement outcomes are modeled as decisions with nature being an action-minimizing economic agent. We translate physical notions of causality, correlation, counterfactuals, and contextuality to particular aspects of game theory. We investigate the causal consistency of dynamic games with imperfect information from the quantum perspective and conclude that counterfactual dependencies should be distinguished from causation and correlation as a separate phenomenon of its own. Most significantly, we observe that game theory based on Nash equilibria stands in contradiction with a violation of Bell inequalities. Hence, we propose that quantum physics should be analyzed with non-Nashian game theory, the inner workings of which we demonstrate using our proposed model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.