Abstract

ObjectiveSignificant eosinophil infiltration and tissue remodeling are common characteristics of conditions associated with chronic airway inflammation, such as chronic rhinosinusitis with nasal polyp and bronchial asthma. This study was designed to elucidate the role of eosinophil-fibroblast interactions in tissue remodeling during chronic airway inflammation. MethodsPeripheral blood eosinophils or EoL-1 eosinophilic leukemia cells were cocultured with nasal polyp fibroblasts (NPFs). Coculture-induced release of exosomes, major components of extracellular vesicles (EVs), and a profibrotic cytokine, vascular endothelial growth factor (VEGF), were evaluated by enzyme-linked immunosorbent assay. ResultsEosinophil-NPF interactions stimulated the release of exosomes and VEGF into culture supernatants. Coculture-induced release of exosomes was stimulated earlier than VEGF release, at 3 h of incubation. The average size of the EVs released by NPFs was 133 ± 3.6 nm. NPF-derived EVs (exosome concentration: 25 pg/mL) significantly stimulated VEGF release from EoL-1 cells. Pretreatment of NPFs with exosome inhibitor, GW4869 or DMA attenuated the release of exosomes and VEGF from cocultured EoL-1 cells and NPFs. ConclusionThe results of this study indicate that eosinophil-fibroblast interactions are important in the pathophysiology of tissue remodeling in eosinophil-predominant airway inflammation and that NPF-derived exosomes play a crucial role in the release of VEGF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.