Abstract

One of the pathological hallmarks of Alzheimer's disease (AD) is deposits of amyloid beta-peptide (Abeta) in neuritic plaques and cerebral vessels. Immunization of AD mouse models with Abeta reduces Abeta deposits and improves memory and learning deficits. Because recent clinical trials of immunization with Abeta were halted due to brain inflammation that was presumably induced by a T-cell-mediated autoimmune response, vaccination modalities that elicit predominantly humoral immune responses are currently being developed. We have nasally immunized a young AD mouse model with an adenovirus vector encoding 11 tandem repeats of Abeta1-6 fused to the receptor-binding domain (Ia) of Pseudomonas exotoxin A (PEDI), AdPEDI-(Abeta1-6)(11), in order to evaluate the efficacy of the vector in preventing Abeta deposits in the brain. We also have investigated immune responses of mice to AdPEDI-(Abeta1-6)(11). Nasal immunization of an AD mouse model with AdPEDI-(Abeta1-6)(11) elicited a predominant IgG1 response and reduced Abeta load in the brain. The plasma IL-10 level in the AD mouse model was upregulated after immunization and, upon the stimulation with PEDI-(Abeta1-6)(11), marked IL-10 responses were found in splenic CD4(+) T cells from C57BL/6 mice that had been immunized with AdPEDI-(Abeta1-6)(11). These results suggest that the induction of Th2-biased responses with AdPEDI-(Abeta1-6)(11) in mice is mediated in part through the upregulation of IL-10, which inhibits activation of dendritic cells that dictate the induction of Th1 cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call