Abstract

Naphthalene vapor is a nasal cytotoxicant in the rat and mouse but is a nasal carcinogen in only the rat. Inhalation dosimetry is a critical aspect of the inhalation toxicology of inspired vapors and may contribute to the species differences in the nasal response. To define the nasal dosimetry of naphthalene in the B6C3F1 male and female mouse, uptake of naphthalene vapor was measured in the surgically isolated upper respiratory tract (URT) at inspiratory flow rates of 25 or 50ml/min. Uptake was measured at multiple concentrations (0.5, 3, 10, 30ppm) in controls and mice treated with the cytochrome P450 inhibitor 5-phenyl-1-pentyne. In both sexes, URT uptake efficiency was strongly concentration dependent averaging 90% at 0.5ppm compared to 50% at 30ppm (25ml/min flow rate), indicating saturable processes were involved. Both uptake efficiency and the concentration dependence of uptake were significantly diminished by 5-phenyl-1-pentyne indicating inspired naphthalene vapor is extensively metabolized in the mouse nose with saturation of metabolism occurring at the higher concentrations. A hybrid computational fluid dynamic physiologically based pharmacokinetic model was developed for nasal dosimetry. This model accurately predicted the observed URT uptake efficiencies. Overall, the high URT uptake efficiency of naphthalene in the mouse nose indicates the absence of a tumorigenic response is not attributable to low delivered dose rates in this species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.