Abstract

Hybrid constructs associating a biodegradable matrix and autologous chondrocytes hold promise for the treatment of articular cartilage defects. In this context, our objective was to investigate the potential use of nasal chondrocytes associated with a fibrin sealant for the treatment of articular cartilage defects. The phenotype of primary nasal chondrocytes (NC) from human (HNC) and rabbit (RNC) origin were characterized by RT-PCR. The ability of constructs associating fibrin sealant and NC to form a cartilaginous tissue in vivo was investigated, firstly in a subcutaneous site in nude mice and secondly in an articular cartilage defect in rabbit. HNC express type II collagen and aggrecan, the two major hallmarks of a chondrocytic phenotype. Furthermore, when injected subcutaneously into nude mice within a fibrin sealant, these chondrocytes were able to form a cartilage-like tissue. Our data indicate that RNC also express type II collagen and aggrecan and maintained their phenotype in three-dimensional culture within a fibrin sealant. Moreover, treatment of rabbit articular cartilage defects with autologous RNC embedded in a fibrin sealant led to the formation of a hyalin-like repair tissue. The use of fibrin sealant containing hybrid autologous NC therefore appears as a promising approach for cell-based therapy of articular cartilage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.