Abstract

We demonstrate that therapeutically useful amounts of insulin are absorbed by the nasal mucosa of human beings when administered as a nasal spray with the common bile salts. By employing a series of bile salts with subtle differences in the number, position, and orientation of their nuclear hydroxyl functions and alterations in side chain conjugation, we show that adjuvant potency for nasal insulin absorption correlates positively with increasing hydrophobicity of the bile salts' steroid nucleus. As inferred from studies employing various concentrations of unconjugated deoxycholate and a constant dose of insulin, insulin absorption begins at the aqueous critical micellar concentration of the bile salt and becomes maximal when micelle formation is well established. These and other data are consistent with the complementary hypotheses that bile salts act as absorption adjuvants by producing high juxtamembrane concentrations of insulin monomers via solubilization in mixed bile salt micelles and forming reverse micelles within nasal membranes, through which insulin monomers can diffuse through polar channels from the nares into the blood stream.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.