Abstract

Neural Architecture Search (NAS) has shown great potential in effectively reducing manual effort in network design by automatically discovering optimal architectures. What is noteworthy is that as of now, object detection is less touched by NAS algorithms despite its significant importance in computer vision. To the best of our knowledge, most of the recent NAS studies on object detection tasks fail to satisfactorily strike a balance between performance and efficiency of the resulting models, let alone the excessive amount of computational resources cost by those algorithms. Here we propose an efficient method to obtain better object detectors by searching for the feature pyramid network as well as the prediction head of a simple anchor-free object detector, namely, FCOS (Tian et al. in FCOS: Fully convolutional one-stage object detection, 2019), using a tailored reinforcement learning paradigm. With carefully designed search space, search algorithms, and strategies for evaluating network quality, we are able to find top-performing detection architectures within 4 days using 8 V100 GPUs. The discovered architectures surpass state-of-the-art object detection models (such as Faster R-CNN, RetinaNet and, FCOS) by 1.0 to 5.4% points in AP on the COCO dataset, with comparable computation complexity and memory footprint, demonstrating the efficacy of the proposed NAS method for object detection. Code is available at https://github.com/Lausannen/NAS-FCOS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.