Abstract

Relation extraction, a crucial task in natural language processing (NLP) for constructing knowledge graphs, entails extracting relational semantics between pairs of entities within a sentence. Given the intricacy of language, a single sentence often encompasses multiple entities that mutually influence one another. Recently, various iterations of recurrent neural networks (RNNs) have been introduced into relation extraction tasks, where the efficacy of neural network structures directly influences task performance. However, many neural networks necessitate manual determination of optimal parameters and network architectures, resulting in limited generalization capabilities for specific tasks. In this paper, we formally define the context-based relation extraction problem and propose a solution utilizing neural architecture search (NAS) to optimize RNN. Specifically, NAS employs an RNN controller to delineate an RNN cell, yielding an optimal structure to represent all relationships, thereby aiding in extracting relationships between target entities. Additionally, to enhance relation extraction performance, we leverage the XLNet pretrained model to comprehensively capture the semantic features of the sentence. Extensive experiments conducted on a real-world dataset containing words with multiple relationships demonstrate that our proposed method significantly enhances micro-F1 scores compared to state-of-the-art baselines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.