Abstract

Background: Predicting symptomatic relief after septoplasty has been difficult. Minimal cross-sectional area (mCSA) measured by acoustic rhinometry and airflow resistance (R) measured by rhinomanometry have been used to select surgical candidates with mixed success. An important assumption is that mCSA and resistance are tightly coupled, but studies have reported weak or no correlation. Recently, we proposed the Bernoulli Obstruction Theory as an explanation, where tight coupling between mCSA and R is only predicted below a critical mCSA (Acrit). Methods: The nasal airway and septum of 10 healthy subjects were reconstructed from computed tomography scans. Simulated anterior septal deviations of increasing severity were created. Computational fluid dynamics simulations were performed to quantify mCSA, resistance, and flow in the healthy septum model and four simulated septal deviation models for each subject (total of 50 models). Results: A tighter coupling between mCSA and resistance was found below Acrit, estimated to be 0.20 cm2 (a very severe deviation). Above Acrit, enlarging the mCSA had a smaller effect in patients with narrower cross-sectional area in the postvalve region (CSAPV). Conclusions: Two patterns of flow increase are expected with septoplasty. Below Acrit, enlarging mCSA predictably increases flow. Above Acrit, the effect size of increasing mCSA depends on CSAPV. Unrecognized small CSAPV may explain persistent sensation of nasal obstruction after septoplasty. Our data suggest that inferior turbinate reduction ipsilateral to a septal deviation may amplify airflow benefits after septoplasty in patients with a narrow CSAPV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.