Abstract

This study experimentally demonstrates infrared wavelength selective thermal emission based on Tamm plasmon polaritons (TPPs). Unlike conventional TPP structures, which have a thin metal layer on a distributed Bragg reflector (DBR), the proposed structure has a thick metal under a DBR that is more robust for thermal radiation. The number of DBR pairs is a critical factor in maximizing the narrowband emission needed to satisfy the impedance matching condition, which varies with the choice of metal film. Optimum designs for four different metals, aluminum, gold, molybdenum, and tungsten, are presented. The temporal coupled-mode theory was introduced to explain the origin of the high Q-factor of the proposed structure, which can achieve a twice higher Q-factor for the measured emissivity compared to typical plasmonic thermal emitters. The structure is one-dimensional, consisting of only multilayers and free from nanopatterning, offering a practical design in applications such as gas sensing, narrowband IR so...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.