Abstract

A highly localized source of low-frequency shear waves can be created by the modulated radiation force resulting from two intersecting quasi-continuous-wave ultrasound beams of slightly different frequencies. In contrast to most other radiation force-based methods, these shear waves can be narrowband. Consequently, different frequency-dependent effects will not significantly affect their spectrum as they propagate within a viscoelastic medium, thereby enabling the viscoelastic shear properties of the medium to be determined at any given modulation frequency. This can be achieved by tracking the shear wave phase delay and change in amplitude over a specific distance. In this paper we explore the properties of short duration (dynamic) low-frequency shear wave propagation and study how the shear displacement field depends on the excitation conditions. Our investigations make use of the approximate Green's functions for viscoelastic media, and the evolution of such waves is studied in the spatiotemporal domain from a theoretical perspective. Although nonlinearities are included in our confocal source model, just the properties of the fundamental shear component are examined in this paper. We examine how the shear wave propagation is affected by the shear viscosity, the coupling wave, the spatial distribution of the force, the shear speed, and the duration of the modulated wave. A method is proposed for estimating the shear viscosity of a viscoelastic medium. In addition, it is shown how the Voigt model paremeters can be extracted from the frequency-dependent speed and attenuation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.