Abstract

Narrowband radar imaging algorithms based on the micro-Doppler (m-D) characteristics of precessional targets will lose efficacy since specular scattering makes the spectrogram discontinuous and unrecognizable. Specular scattering occurs under the condition that the incident angle of wave is perpendicular to the target surface. To image the precessional target under specular scattering, we propose a narrowband imaging algorithm via complex-valued empirical-mode decomposition-time frequency distribution-general Radon transform (CEMD-TFD-GRT) after analyzing the m-D characteristics of specular scattering centers. The CEMD first decomposes the echo into several components according to their spectrums varying from high to low so that the Doppler spectrums suppressed by the specular scattering can be recognized. Then, TFD-GRT is used to extract the parameters of m-D curves from which the positions of scattering centers can be reconstructed. In addition, the computation complexity of CEMD-TFD-GRT is analyzed and the Cramer–Rao low bounds for the coordinates estimation are derived. The experiment results with anechoic chamber data demonstrate that the scattering centers of precessional targets can be imaged with the proposed algorithm even when specular scattering occurs. The noise influence on the proposed algorithm is also presented with the experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.