Abstract

We theoretically propose a narrowband perfect absorber metasurface (PAMS) based on surface phonon polaritons in the terahertz range. The PAMS has unit cell consisting of a silver biarc on the top, a thin polar-dielectric in the middle and a silver layer at the bottom. The phonon polaritons are excited at the interface between the silver biarc and the polar dielectric, and enhance the absorption of the PAMS. The absorption peak is at 36.813 μm and the full width half maximum (FWHM) is nearly 36 nm, independent of the polarization and incidence angle. The electric fields are located at the split of the biarc silver layer and the quality factor Q is 1150. The FWHM decreases with the decreasing split width. When the thickness of the bottom layer is larger than 50 nm, the narrow band and high absorption are insensitive to the thickness of those layers. The designed absorber may have useful applications in terahertz spectra such as energy harvesting, thermal emitter, and sensing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.