Abstract

One possibility of enhancing light absorption in monolayer graphene at near-infrared (NIR) wavelength region with grating structures is proposed and investigated. It is demonstrated that it is possible to achieve near-perfect absorption when a single monolayer graphene is sandwiched between two gratings with optimized geometric parameters at normal incidence for transverse electric (TE) polarization. By means of the rigorous coupled-wave analysis (RCWA), the effects of technological tolerances on the optical response of the structure by varying geometric parameters and incident angle are studied. The proposed photonic structure could be efficiently exploited as a building block for innovative optical absorbers or photodetectors in combination with active materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call