Abstract

Campylobacter jejuni is a major cause of food-borne illness due to its ability to reside within the gastrointestinal tracts of chickens. Multiple studies have identified the flagella of C. jejuni as a major determinant of chicken colonization. An inhibitor screen of approximately 147,000 small molecules was performed to identify compounds that are able to inhibit flagellar expression in a reporter strain of C. jejuni. Several compounds that modestly inhibited motility of wild-type C. jejuni in standard assays were identified, as were a number of small molecules that robustly inhibited C. jejuni growth, in vitro. Examination of similar bacterial screens found that many of these small molecules inhibited only the growth of C. jejuni. Follow-up assays demonstrated inhibition of other strains of C. jejuni and Campylobacter coli but no inhibition of the closely related Helicobacter pylori. The compounds were determined to be bacteriostatic and nontoxic to eukaryotic cells. Preliminary results from a day-of-hatch chick model of colonization suggest that at least one of the compounds demonstrates promise for reducing Campylobacter colonization loads in vivo, although further medicinal chemistry may be required to enhance bioavailability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call