Abstract

Monolithic distributed feedback semiconductor lasers (1550 nm) for FMCW LiDAR applications have been designed, fabricated and tested. The strong optical frequency modulation distortion observed when a standard DFB laser is modulated with a triangular current waveform is significantly mitigated in our laser. A 100 kHz frequency modulation with amplitude of 0.9 GHz and nonlinear distortion of 0.3%, calculated as the standard deviation of the optical frequency after removal of a linear fit, was measured through an unbalanced fiber interferometer. This was achieved without electronic pre-distortion of the triangular waveform. The 60 kHz intrinsic linewidth of the laser was unaffected by the modulation. Two lasers were co-packaged in a 2.6 cm<sup>3</sup> multi-layer ceramic package and coupled to fiber pigtails with micro-lenses. The pins of the ceramic package were soldered to a printed circuit board containing the current sources driving the lasers. This optical source was used in a two-channel LiDAR demonstrator built from off-the-shelf fiber optic components and a twodimensional gimbal scanning mirror. This demonstrator enabled detecting a target with 10 % Lambertian reflectivity up to a distance of &gt;120 m and recording point clouds of different scenes. This shows that FMCW LiDAR in combination with highly coherent and linear DFB laser sources is a very promising technology for long range sensing. A version under development will include a silicon photonics chip for further integration and functionality including I/Q detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call