Abstract
We report on the theoretical and experimental investigations of optical microcavities consisting in the plane-plane arrangement of a broadband high-reflectivity mirror and a suspended one-dimensional grating mirror possessing a high-quality factor Fano resonance. By varying the length of these cavities from the millimeter to the few-micron range, we observe at short lengths the reduction of the spectral linewidth predicted to occur for such a Fano cavity as compared to a conventional broadband mirror cavity with the same length and internal losses. Such narrow linewidth and small modevolume microcavities with high-mechanical quality ultrathin mirrors will be attractive for a wide range of applications within optomechanics and sensing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.