Abstract

Based on the cesium $6{S}_{1/2}$-$6{P}_{3/2}$-$8{S}_{1/2}$ ladder-type atomic system, double-resonance optical pumping (DROP) spectra including electromagnetically induced transparency (EIT) effects have been investigated with a room-temperature cesium vapor cell. For both cases of the probe and the coupling laser beams passing through the cesium vapor cell with the counter-propagation (CTP) and co-propagation (CP) configurations, the DROP spectra measured in the experiment display explicitly different linewidths. Thanks to the EIT effect, the linewidth of the DROP spectrum is explicitly narrower for the CTP configuration than for the CP configuration. Experimental results agree with the theoretical analysis considering Doppler averaging. Furthermore, when the coupling laser has moderate power, the DROP spectrum for the CTP configuration clearly shows two components: the narrow part due to the EIT effect and the broad part caused by optical pumping (but these two different components are never seen in the CP configuration). Also, the effect of the intensity of the coupling and probe lasers on the DROP spectra is investigated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call