Abstract

We report a diode laser system developed for narrow-line cooling and trapping on the 1S0–3P1 intercombination transition of neutral strontium atoms. Doppler cooling on this spin-forbidden transition with a line width of Γ/2π=7.1 kHz enables us to achieve sub-μK temperatures in a two-step cooling process. The required reduction of the laser line width to the kHz level was achieved by locking the laser to a tunable Fabry–Perot cavity. The long-term drift (>0.1 s) of the reference cavity was compensated by employing the saturated absorption signal obtained from Sr vapor in a heat pipe of novel design. We demonstrate the potential of the system by performing spectroscopy of Sr atoms confined to the Lamb–Dicke regime in a one-dimensional optical lattice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.