Abstract

Narrow beam light transfer in a layer of small particles is treated theoretically in terms of degradation of image quality and depolarization. Computer simulations using Monte Carlo methods are described, and some results of the simulations are shown. Simulations were done for cases in which a ground-based linearly polarized light beam is transmitted to a spacecraft through cloud layers, and the light is detected on the spacecraft. Image degradation and light depolarization resulting from transmission through clouds are shown qualitatively and quantitatively. The results indicate that depolarization is negligibly small, but degradation of image quality is not negligible, especially when the light beam divergence is large. At infrared wavelengths the effect of image blurring is much smaller than at visible wavelengths.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.